

Crypto Seems Random, But It's Chaotic: N-CATS, A Model for Cryptocurrency Price Prediction

Jayjay (Jeongjin) Park

Computational Science & Engineering Department

Problem: Crypto-currency Price Prediction

Crypto-currency Market

- shows chaotic behavior, which implies that it is chaotic dynamical system¹
- is weakly market efficient²

 \Rightarrow Thus, use both market's chaotic dynamics along with past trends of price to predict crypto-asset price.

Research Question

- RQ1: How does baseline model perform in predicting price?
- RQ2: How can we make a model learn market dynamics information?
- RQ3: How does the new model perform?

Why is this prior knowledge possibly helpful?

- Dynamical System: A system whose behavior is described by predefined rules, for e.g. x_t = f(x_{t-1}, t)
- Chaotic System: A deterministic dynamical system that is *extremely sensitive to initial points* ⇒ Long term prediction is almost impossible

Figure: Example of Chaotic System

 \Rightarrow we can use statistical measures of chaotic system

- 1. to assist with training, or
- 2. verify if a model learned a true dynamics or not

What would learning a chaotic dynamical system from data mean?

- If a model learned
 - a chaotic system,
 - Auto-correlation, $\rightarrow 0$, $\Leftrightarrow \lim_{t \to \infty} C(x_t, x_{t+\tau})$
 - Lyapunov exponent, $\lambda_{time-series} > 0$
 - a correct chaotic system,
 - Multi-step prediction error should be low

Figure: Auto-correlation of bitcoin price

- Auto-correlation \rightarrow will be included in loss
- Lyapunov exponent, multi-step prediction $\mathsf{error} \to \mathsf{will}$ be used to verify if a model learned a chaotic system

Experiment: Data

- Data: Bitcoin Historical Dataset from Kaggle(Link)
 - Price per 1 Minute historical data of 2021, used only one feature, Closing price → univariate time series prediction
 - Size of Training Data: 7546
 - Size of Test Data: 3234
- Preprocess: Min-Max Scaling

Figure: Full Dataset Visualized

Experiment Setting

Baseline: LSTM, Neural ODE

- Training Algorithm: AdamW
 - Learning rate: 1e 3, 5e 4
 - Number of epoch: 1000
- LSTM Setting:
 - window size = 10
 - 1 LSTM Layer, 2 Linear Layer
- Neural ODE Setting:
 - Feed Forward Neural Network of 6 Layers for approximating ODE

New Model: N-CATS, Neural Chaotic Autocorrelation for Time Series

- Training Algorithm: AdamW
 - Learning rate: 5e 4
 - Number of epoch: 800
- N-CATS setting:
 - 2 FFN of 2 Layers for approximating SDE (drift, diffusion)
 - latent_dim = 64

RQ1: How does baseline model perform in predicting price?

	Train loss	Test loss	Norm Diff of LE
LSTM	0.04117	0.11384	inf
Neural ODE	3.2348e - 05	1.0721e - 05	0.0001

Table: Baseline loss

- LSTM's limitation: vanishing gradient problem^a
- Neural ODE limitation: sensitive to noise in input data

RQ2: How can we make a model learn market dynamics information?

- N-CATS: Neural Chaotic Auto-Correlation for Time Series
- Latent Model:
 - Neural SDE (\Rightarrow N-CATS_NSDE)

$$\mathcal{L}_{new_loss} = \mathcal{L}_{MSE} + \lambda * \mathcal{L}_{autocorrelation} \quad s.t.\lambda \in [0, 1]$$
$$\mathcal{L}_{auto-correlation} = \mathbb{E}(x_t x_{t+\tau}) - \mathbb{E}(x_t) \mathbb{E}(x_{t+\tau})$$
$$= \frac{1}{T} \sum_{t \leq T} x_t x_{t+\tau} - \frac{1}{T} \sum_{t \leq T} x_t \frac{1}{T} \sum_{t \leq T} x_{t+\tau}$$

RQ3: How does N-CATS perform?

	True LE		Learned LE		Norm Diff		
N-CATS	ATS [0.2607571, -0.1330105		[0.2607815]	[0.26078153, -0.13299644]			
Table: LE of N-CATS							
		Train Loss (One-Step) in MSE or New Loss	Test Loss (One-Step) in MSE	Multi-Step Prediction Loss	Norm Diff LE		
LSTM		0.04117	0.11384	inf			
Neural OD	ΡE	3.2348e - 05	$1.0721\mathrm{e}-05$	16.9741	0.0001		
N-CATS		0.0022	0.00013	6.5225	$\mathbf{2.8197e} - 05$		

Table: Loss Table

N-CATS show

- Lowest LE Norm Difference!
- Lowest Multi-Step Prediction Error!

RQ3: How does N-CATS perform?

Figure: Multi-Step Prediction of N-CATS on unseen data

Bibliography

- [1] Andrii O Bielinskyi and Oleksandr A Serdyuk. "Econophysics of cryptocurrency crashes: a systematic review". In: (2021).
- [2] Anoop CV, Neeraj Negi, and Anup Aprem. "Bayesian framework for characterizing cryptocurrency market dynamics, structural dependency, and volatility using potential field". In: arXiv preprint arXiv:2308.01013 (2023).
- [3] Samet Gunay and Kerem Katkalo to Coder in the Cryptocurrency Market". In: Mathematical and Computational Applications 24.2 (2019), p. 36.
- [4] Salim Lahmiri and Stelios Bekiros. "Chaos, randomness and multi-fractality in Bitcoin market". In: Chaos, solitons & fractals 106 (2018), pp. 28–34.
- [5] Shuai Li et al. Independently Recurrent Neural Network (IndRNN): Building A Longer and Deeper RNN. 2018. arXiv: 1803.04831 [cs. cV].
- [6] Alberto Partida et al. "The chaotic, self-similar and hierarchical patterns in Bitcoin and Ethereum price series". In: Chaos, Solitons Fractals 165 (2022), p. 112806. ISSN: 0960-0779. DOI: https://doi.org/10.1016/j.chaos.2022.112806.URL: https://www.sciencedirect.com/science/article/poil/8096007792009857.
- [7] Zhongwen Tong, Zhanbo Chen, and Chen Zhu. "Nonlinear dynamics analysis of cryptocurrency price fluctuations based on Bitcoin". In: Finance Research Letters 47 (2022), p. 102803.
- [8] Eojin Yi et al. "Market efficiency of cryptocurrency: evidence from the Bitcoin market". In: Scientific Reports 13.1 (2023), p. 4789.

Thank you for coming! Any Questions?