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Problem: Crypto-currency Price Prediction

1 Crypto-currency Market

• shows chaotic behavior, which implies that it is chaotic dynamical system1

• is weakly market efficient2

⇒ Thus, use both market’s chaotic dynamics along with past trends of
price to predict crypto-asset price.

2 Research Question
• RQ1: How does baseline model perform in predicting price?
• RQ2: How can we make a model learn market dynamics information?
• RQ3: How does the new model perform?
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Why is this prior knowledge possibly helpful?

• Dynamical System: A system whose
behavior is described by predefined rules, for
e.g. xt = f(xt−1, t)

• Chaotic System: A deterministic dynamical
system that is extremely sensitive to initial
points⇒ Long term prediction is almost
impossible

Figure: Example of Chaotic System

⇒ we can use statistical measures of chaotic system

1. to assist with training, or

2. verify if a model learned a true dynamics or not
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What would learning a chaotic dynamical system from data mean?

• If a model learned
• a chaotic system,

• Auto-correlation,→ 0,⇔
limt→∞ C(xt, xt+τ )

• Lyapunov exponent,
λtime−series > 0

• a correct chaotic system,
• Multi-step prediction error should
be low

Figure: Auto-correlation of bitcoin price

• Auto-correlation→ will be included in loss
• Lyapunov exponent, multi-step prediction error→ will be used to verify if a
model learned a chaotic system
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Experiment: Data

• Data: Bitcoin Historical Dataset
from Kaggle(Link)

• Price per 1 Minute historical
data of 2021, used only one
feature, Closing price→
univariate time series prediction

• Size of Training Data: 7546

• Size of Test Data: 3234

• Preprocess: Min-Max Scaling

Figure: Full Dataset Visualized
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https://www.kaggle.com/datasets/prasoonkottarathil/btcinusd/?select=BTC-2021min.csv


Experiment Setting
1 Baseline: LSTM, Neural ODE

• Training Algorithm: AdamW
• Learning rate: 1e − 3, 5e − 4
• Number of epoch: 1000

• LSTM Setting:
• window size = 10
• 1 LSTM Layer, 2 Linear Layer

• Neural ODE Setting:
• Feed Forward Neural Network of 6 Layers for approximating ODE

2 NewModel: N-CATS, Neural Chaotic Autocorrelation for Time Series

• Training Algorithm: AdamW
• Learning rate: 5e − 4
• Number of epoch: 800

• N-CATS setting:
• 2 FFN of 2 Layers for approximating SDE (drift, diffusion)
• latent_dim = 64
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RQ1: How does baseline model perform in predicting price?
Train loss Test loss Norm Diff of LE

LSTM 0.04117 0.11384 inf
Neural ODE 3.2348e − 05 1.0721e − 05 0.0001

Table: Baseline loss

Figure: LSTM One-step Prediction Figure: Neural ODE Multi-step Prediction

• LSTM’s limitation: vanishing gradient problema

• Neural ODE limitation: sensitive to noise in input data

a5.
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RQ2: How can we make a model learn

market dynamics information?

• N-CATS: Neural Chaotic Auto-Correlation for Time Series
• Latent Model:

• Neural SDE (⇒ N-CATS_NSDE)

Lnew_loss = LMSE + λ ∗ Lautocorrelation s.t.λ ∈ [0, 1]

Lauto−correlation = E(xtxt+τ )− E(xt)E(xt+τ )

=
1

T
∑
t≤T

xtxt+τ − 1

T
∑
t≤T

xt
1

T
∑
t≤T

xt+τ
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RQ3: How does N-CATS perform?
True LE Learned LE Norm Diff

N-CATS [0.2607571,−0.1330105] [0.26078153,−0.13299644] 2.8197e − 05

Table: LE of N-CATS

Train Loss
(One-Step)

in MSE or New Loss

Test Loss
(One-Step)
in MSE

Multi-Step
Prediction Loss

Norm Diff LE

LSTM 0.04117 0.11384 inf
Neural ODE 3.2348e − 05 1.0721e − 05 16.9741 0.0001
N-CATS 0.0022 0.00013 6.5225 2.8197e − 05

Table: Loss Table

N-CATS show

• Lowest LE Norm Difference!

• Lowest Multi-Step Prediction Error!
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RQ3: How does N-CATS perform?

Figure: One-Step Prediction of N-CATS

Figure: Multi-Step Prediction of N-CATS on unseen data 9/10
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Thank you for coming! Any Questions?
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